Surfactant protein C peptides with salt-bridges (“ion-locks”) promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein
نویسندگان
چکیده
Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as 'helical adjuvants' to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges ("ion-locks") promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu(-)-Lys(+) into the parent SP-C's. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with 'amyloid-like' properties. The enhanced β-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard (12)C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu(-)-Lys(+) insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu(-)-Lys(+) ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.
منابع مشابه
Biophysical Studies on the Interaction of Insulin with a Cationic Gemini Surfactant
A novel quaternary ammonium-based cationic gemini surfactant (S6) having 1,6 di-bromo hexane as a spacer, have been used and its interaction with insulin in aqueous solution (pH, 7.40) was investigated by several methods including fluorescence spectroscopy, UV-Vis spectroscopy, circular dichroism, dynamic light scattering, ζ-potential measurements, conductivity and transmission electron microsc...
متن کاملAntimicrobial activity of native and synthetic surfactant protein B peptides.
Surfactant protein B (SP-B) is secreted into the airspaces with surfactant phospholipids where it reduces surface tension and prevents alveolar collapse at end expiration. SP-B is a member of the saposin-like family of proteins, several of which have antimicrobial properties. SP-B lyses negatively charged liposomes and was previously reported to inhibit the growth of Escherichia coli in vitro; ...
متن کاملDesigner Amphiphilic Short Peptides Enhance Thermal Stability of Isolated Photosystem-I
Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of t...
متن کاملSalinity Effect on the Surfactant Critical Micelle Concentration through Surface Tension Measurement
One of the tertiary methods for enhanced oil recovery (EOR) is the injection of chemicals into oil reservoirs, and surface active agents (surfactants) are among the most used chemicals. Surfactants lead to increased oil production by decreasing interfacial tension (IFT) between oil and the injected water and to the wettability alteration of the oil reservoir rock. Since surfactants are predomin...
متن کاملPhysicochemical Position-Dependent Properties in the Protein Secondary Structures
Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...
متن کامل